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Abstract. In an attempt to deal with the problem of tracking control for the non-

linear system, a non minimum phase is considered. Indeed, the main idea here is 

to neglect a part of the system dynamics so as to make the approximate system in-

put-state feedback linearizable. The neglected part is then considered as a pertur-

bation. Also, a linear controller is designed to control the approximate system. 

Stability is analyzed using the vanishing perturbation theory. The performance of 

the proposed approach is evaluated in an illustrative inverted cart-pendulum ex-

ample. 

Keywords: Tracking Control, Non-minimum Phase System, Observability Nor-

mal Form, Vanishing Perturbation. 

1   Introduction 

   The tracking control for nonlinear non minimum systems is a challenging prob-

lem in the control theory [4][8][14]. The standard input-output linearization [5]-

[11]-[12] leads to an unstable closed loop system due to the presence of unstable 

zero dynamics. Hence, various ideas related to the possibility of using input-

output linearization have been explored in the literature dealing with the nonlinear 

non-minimum phase system. In [3], a nonlinear state feedback and a coordinate 

transformation are used to make the system as close as possible to a linear one. In 
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[2], the system input output feedback is first linearized. Then, the zero dynamics is 

factorized into stable and unstable parts. The unstable part is approximately linear 

and independent of the coordinates of the stable part.  [6] Proposed a numerical 

approach applying multivariable legendre polynomials to achieve an exact alge-

braic expression for the exact linearizing feedback. On the other hand, a cascade 

control scheme has been considered that combines the input-output feedback line-

arization and the backstepping approach [5]. 

In this paper, we address the problem of tracking control of a single input single 

output of non minimum phase nonlinear systems. The idea here is to approximate 

the given system into input state feedback linearizable system. The system is 

feedback linearized by neglecting a part of the system dynamics, with the neglect-

ed part being considered as a perturbation. Stability analysis is also provided 

based on the vanishing perturbation theory [13]. 

The present paper is organized as follows: in Section 2 some mathematical pre-

liminaries are presented. The cascade control law design and the stability analysis 

are given in Section 3. Section 4 gives the inverted cart-pendulum to illustrate the 

effectiveness of the proposed approach. Finally, some concluding remarks are 

provided in Section 5. 

2   Preliminaries and Problem Statement  

In this paper, we consider a nonlinear Single-Input Single-Output (SISO)        

system of the form: 

( ) ( ) ( )

( )
0, 0x f x g x u x x

y h x

= + =

=

�

                                                             (1) 

 where nx∈ℜ  is the n-dimensional state variables, u∈ℜ  is a scalar manipulate 

input and y∈ℜ  is a scalar  output. ( ) ( ). , .f g  and ( ).h  are smooth functions de-

scribing the system dynamics.  

2.1   Input-Output Linearization  

Consider the output ( )xy= h  for system (1). The nonlinear system (1) has rel-

ative degree  at the point if: 

( )
( ) ( )

0

1

0 and 1

0

k
f

k
g f

L h x x x k r

L L h x
−

= ∀ ≠ ∀ ≤ −

≠
                                               (2) 

So, the relative degree  is the number of times we have to differentiate the out-

put  with respect to time before the input appears [11].  

r
0x

r
y



3 

If , then system (1) can be feedback linearized into Byrnes-Isidori normal 

form [10]: 

( ) ( ) 1

T
r
f n rh x L h xξ η η −

 =   
… �                                 (3) 

The resulting system with the transformed variables (1) can be written as: 

( ) ( )

( )

1

1

1

1, , 1

,

i i

r r
r f g f

i r

v L h x L L h x u

q

y

ξ ξ

ξ

η ξ η

ξ

+

−

= = −

= = +

=

=

� …

�

�

                                                 (4) 

where v is the new control law. 

Thus, the control law can be written as: 

( )
( )

( )1

r
f

r
g f

v L h x
u x

L L h x
−

−
=

 

                                                    (5)  

2.2 Vanishing Perturbation Theory 

In this section, we consider the nonlinear system (1) which is written in the au-

tonomous form for the following perturbed system: 

( ) ( ) ( ) 00x f x x , x x= + Θ =�                                        (6) 

where ( )f x  represents the nominal dynamics, with ( )0 0f = , and ( )xΘ  represents 

the perturbed dynamics. f and Θ are Lipchitz in x . The vanishing perturbation 

theory is based on the assumption that the perturbation tends towards zero in the 

origin ( )0 0Θ = . 

Thus, if the nominal system is exponentially stable and the parameter λ  is smaller 

than a predetermined limit, then the perturbed system is also exponentially stable. 

 

Theorem 1 [13]: Let ( )0x =  is the equilibrium point of the nominal system 

 which is exponentially stable and ( )V x is a Lyapunov function of the 

nominal system that satisfies the following conditions: 

i. 
( )

( ) 2
1

V x
f x c x

x

∂
≤ −

∂
                                                              (7) 

ii. 
( )

2

V x
c x

x

∂
≤

∂
                                                                    (8) 

with  and  are two  real positive constants. 

 Let ( )0: x xλ λ∃ > Θ ≤ , so, if 1

2

c

c
λ < , the origin ( )0x = is an exponentially stable 

equilibrium  point  of the perturbed system  (6). 

y n≤

( )x f x=�

1c 2c
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3   Main Results 

   In this paper, an approach to the tracking control problem of the nonlinear non 

minimum phase system is proposed based on the vanishing perturbation theory. 

First, the nonlinear non-minimum phase system is transformed into its 

observability normal form. Next, it is in turn approximated as a chain of integra-

tors by neglecting a part of the dynamics. Finally, it is controlled via a linearizing 

feedback. 

3.1   Controller Design 

For dealing with the SISO system in (1), the following assumptions are first made. 

Assumption 1: 

12 n
f f fn

L hL h L hh
x span n

x x x x

−  ∂∂ ∂∂  ∀ ∈ℜ =  ∂ ∂ ∂ ∂    

�                                                     (9) 

where 
2

f fL h L hh
, , ,

x x x

∂ ∂∂

∂ ∂ ∂
�and 

1n
f

L h

x

−
∂

∂
 are linearly independent[10]. 

This assumption implies that the linearized system is observable around all operat-

ing points [15].  

Assumption 2: Let the following state transformation: 

( ) ( ) ( ) ( ) ( )2 1
T

n
f f f

x h x L h x L h x L h xξ − = Φ =   
…                           (10) 

( )xΦ  is a diffeomorphism, i.e.,  the inverse transformation ( )1
x ξ−= Φ  exists and 

is unique for all . 

We start by defining the following error states: 

{ }(i 1)
1,2, ,i i refe i nyξ −= − ∀ ∈ …                                                                                              (11) 

where is a reference trajectory 

using the state transformation (10) and the linearized feedback control (5), the sys-

tem (1) is written as follows:  

n
x ∈ℜ

refy
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( )( )
( )( )

( )( ) ( )( ) ( )

1 2

2 3

1 1
1

1
1 2

1 1 1
00

r
r r g f

r
r r g f

n n n
n gf f ref

e e

e e

e e L L h

e e L L h

e L h L L h u y , e e

ξ

ξ

ξ ξ

− −
+

−
+ +

− − −

=

=

= + Φ

= + Φ

= Φ + Φ − =

�

�

�

�

�

�

�

                     (12) 

with ( )( )1 0i
g f

L L h ξ−Φ = ,  and ( )( )1 0i
g f

L L h ξ−Φ ≠ , . 

The main idea of the proposed approach is to assume that the terms

( )( )1 0i
g f

L L h ξ−Φ ≠ ,   are towards zero and are, then, neglected.  

Thus, the use of this assumption in (12) yielding the following approximate system: 

( )( ) ( )( ) ( ) ( )

1 2

2 3

1

1 2

1 1 1
00

r r

r r

nn n
n gf f d

e e

e e

e e

e e

e L h L L h u y , e eξ ξ

+

+ +

− − −

=

=

=

=

= Φ + Φ − =

�

�

�

�

�

�

�

                                  (13) 

The resulting system (13) consists of a chain of    integrators, and then the fol-

lowing linearizing control can be applied: 

( )( )
( )( )

1

1 1

n
f

n
g f

v L h

u

L L h

ξ

ξ

−

− −

− Φ
=

Φ
                                                                             (14) 

Then, system (13) can be rewritten as follows: 

( ) ( ) 0,

1 2

2 3

0ref

n
en

e e

e e

e v y e =

=

=

= −

�

�

�

�

�

                                                                                (15) 

So, it may be written as: 

( ) 00e Ae Bv, e e= + =�                                                                                                     (16) 

with            

0 1 0 0

0 0 1 0

0 0 0 1

0 0 0

.

.

A

.

. .

 
 
 
 =
 
 
 
 

� � � � �

        

and           

0

0

0

1

B

 
 
 
 =
 
 
 
 

� .                          

The resulting system (16) is composed of a linear one and corresponds to an ap-

proximate input-state input of system (1).  Consequently, the following feedback: 

0 1i r∀ < < − 1 1r i n∀ − ≤ ≤ −

1 2r i n∀ − ≤ ≤ −

n
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( )
1

1

0

r
( r ) i i

iref ref

i

v y k y y

−

+

=

= + −∑                                           (17) 

can be applied to the approximate system (16). We obtain, finally, the following 

linear system in closed loop: 

( )0 0CLe A e, e= =�                                                                                              (18) 

with:    

1 2

0 1 0 . 0

0 0 1 . 0

0 0 0 . 1

. .

CL

n

A

k k k

 
 
 
 =
 
 
 − − − 

� � � � �               

and { }0, 1, 2, ,k i ni > ∀ ∈ …  are the coefficients of a Hurwitz polynomial [13]. 

3.2   Stability Analysis 

In this section, we use the theory of vanishing perturbation to analyze the stabil-

ity of the closed loop system. The application of the linear feedback (17) to the 

transformed system (14) leads to: 

( )( ) ( )1
00CLe A e , e eξ−= + Θ Φ =�                                                                            (19) 

with: 

( )( )
( )( )

( )( )

( ) ( )( )
( )( )

11 1

1

1 1

2 1

0

0

nr
g f f

n
g f

n
g f

Ke t L hL L h

L L h

L L h

ξξ
ξ

ξ

ξ

−− −

−

− −

− −

 
 
 
   + ΦΦ     Θ Φ = −  
  Φ
 

Φ 
 
  

�

�

                    (20) 

Then, replacing ( ),uξ by their values at the equilibrium ( ) ( )0 0,u ,ξ = in (12) gives

( )( )1 1 0 0n
f

L h ξ− −Φ = = . Replacing it in (20) yields ( )0 0Θ = . Therefore, the perturba-

tion is indeed vanishing, and the theory of vanishing perturbations can be used. 

The following theorem gives sufficient conditions for the exponential stability of 

system (19). 

Theorem 2 [7]:  Consider system (1) and assume that the following conditions are 

verified:    

•  
( ) ( ) ( ) ( )12 n

f f fn
L h xL h x L h xh x

x , span n,
x x x x

−  ∂∂ ∂∂  ∀ ∈ℜ =  ∂ ∂ ∂ ∂    

…  

•  ( )( )1
1 10 n

f
, L hδ ξ δ ξ−∃ > Φ ≤ , 
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•  ( )( )1 1
2 20 n

g f
, L L hδ ξ δ− −∃ > Φ ≥  

• The gains ( )0ik , i , ,n= …  are the solutions of Hurwitz polynomial. 

• Let  us consider the function ( )ξ∗Θ defined by:  

( ) ( )( ) ( )( )1 1 2 10 0 0
T

r n
g f g f

L L h L L hξ ξ ξ∗ − − − − Θ = Φ Φ  
… …    (21) 

If   

 ( )
( )( )

2

12 max P K

λ
ξ

α λ

∗Θ <
+

                                                (22) 

where  is the solution of Lyapunov  equation 
T

CL CLP A A P I+ =−  

Thus, the control law (14)-(17) stabilizes system (12) exponentially.  

Proof: Consider Lyapunov function 
T

V e P e=  for system (18), where  is a pos-

itive symmetric matrix that satisfies Lyapunov equation
T

P A A P I+ =− . Then,   

2T T T
CL

V
A e e PAe e A Pe e

e

∂
= + = −

∂
                                                                         (23) 

and: 

2

2

T

max

V
e P P e e P

e

eα

∂
= + ≤

∂

≤

                                                                                   (24) 

 Consider the same Lyapunov function for the perturbed system (19), given by: 

( ) ( ) ( )
2

max2CL

V V
V A e e P e

e e

∂ ∂
= + Θ ξ ≤ − + α Θ ξ

∂ ∂
�                                   (25) 

Noting that ( )( )1

1

n

fL h
−Φ ξ ≤ λ ξ  and ( )( )1 1

2 0n

g fL L h
− −Φ ξ ≥ λ ≥  so by using the expres-

sion ( )Θ ξ  (20), yields: 

( ) ( )1

2

K ∗λ +
Θ ξ ≤ Θ ξ ξ

λ
                                                                (26) 

Replacing (26) in expression (25) gives: 

( ) ( )
2 1

max

2

1 2
K

V e P
∗ λ + 

≤ − − α Θ ξ 
λ 

�                                                 (27) 

Thus, if (22) is verified, the term in the parenthesis is positive and the feedback 

law (14)-(17) stabilizes (12) exponentially.  The following corollaries are related 

to Theorem 2. 

Corollary 1: For a given vector gain  the closed loop system exponentially 

stabilizes (19) for all:

 

( )
( )( )

2

max 12 P K

∗ λ
Θ ξ <

α λ +
 

The corollary above declares that, for any given vector gain K there is a range dif-

ferent from the non-null values of ( )∗Θ ξ  for which system (12) can be stabilized. 

However, the converse is not true, i.e., that is to say, given a perturbation ( )∗Θ ξ , it 

is not always possible to find a gain vector K that stabilizes the system. 

P

P

K
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Corollary 2: Let  1λ  and 2λ  and
( ) ( )

( )* 2

max 1

max , 0
2

K CL
eig A

P K

λ
λ = <

λ λ +
. For

( ) *∗Θ ξ < λ , there exists a vector gain K  that stabilizes system (19) exponentially. 

4   Illustrative Example 

4.1   Description of the Inverted Cart- Pendulum System 

Consider the familiar inverted cart-pendulum system [1], depicted in Fig. 1. The 
cart must be moved using the force  so that the pendulum remains in the upright 

position as the cart tracks any desired trajectory from a class of admissible trajecto-
ries. 

Let the mass of the cart be  , the mass of the pendulum be , the length  of 

the stick be , and the acceleration of the gravity be . The mass of the stick is 

small compared with the mass m and will be neglected by choosing the pendulum 

angle  and the cart position as the generalized position coordinates for the 

system. The effect of friction is also neglected. 

 

Fig. 1.  A Schematic representation of the Inverted Cart-Pendulum System. 

The inverted cart-pendulum equations are: 

( )
( )( )

( ) ( )( )

2

2

cos sin

sin

1
sin cos

c

u m L g
y

M m

g y
L

θ θ θ

θ

θ θ θ

+ −
=

+

= −

�

��

�� ��

                                            (28) 

Let ( ) ( )1 2 3 4

TT

c cx x x x x y yθ θ= = � � and 3y x= .Then, we obtain the follow-

ing state space equation 

u

M m

L g

θ cy

u

cy

θθθθ
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( ) ( )( )

( )( ) ( )

( )

1 2

2 1 4 1

3 4

2

2 1 1

4 2

1

3

1
sin cos

cos sin

sin

x x

x g x x x
L

x x

u m Lx g x x
x

M m x

y x

=

= −

=

+ +
=

+

=

�

� �

�

�

                                 (29) 

The initial conditions are ( ) ( ) ( )0 0 0 0c cy y θ= = =�� and ( )0θ π=− , the downward po-

sition for the pendulum. The system parameters are given in Table 1. 

Table 1.  Numerical Parameters of the Inverted Cart-Pendulum System 

         Parameters Signification        Numerical value 

             Mass of the cart  

         Mass of the rod  

          Length of the rod  

          Gravitational acceleration  

4.2   Control Law 

The objective here is to control the cart displacement  along a reference trajec-

tory and stabilize the pendulum angle  to the upright position. Thus, the pro-

posed approach to the system (2) is applied. Again, the Lie derivatives are com-

puted up to the order of the system 

2 3 4
3 4 1 2 3, , , , , 0f f f f gh x L h x L h T L h T L h T L h= = = = = = ( )2

, 1 / (M sin ),g fL L h m x= +  

2 3
4 5,g f fL L h T L h T= = . The length terms , 1, , 5iT i = …  are included in the appendix. 

Since 2 3
, , ,f f fh L h L h L h are independent, the system can be written in the 

observability normal form (14) given by: 

( )

( )

( ) ( ) ( )

1 2

2 3

2
3 4

4 3 4
4 00

g f

g f

f g f cref

e e

e e L L h x u

e e L L h x u

e L h x L L h x u y , e e

=

= +

= +

= + − =

�

�

�

�

                                      (30) 

and the approximate system, after neglecting the internal dynamics, is given by: 

( ) ( )

1 2

2 3

3 4

4
4 00cref

e e

e e

e e

e v y , e e

=

=

=

= − =

�

�

�

�

                                                                         (31) 

M 0 .4 5 5 kg

m 0.21 kg

l 0.355m

g 29 .8 1 /m s

cy

θ
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Finally, the approximate system is linearized using the following control law: 

( )

( )

4

3

f

g f

v L h x
u

L L h x

−
=                                                                                          (32) 

where  is a linear feedback control: 

( ) ( ) ( ) ( ) ( )4 3 3
1 2 3 4cref c cref c cref c cref ccrefv y k y y k y y k y y k y y= − − − − − − − −� � �� ��

     
(33)  

with ( )crefy t is the desired trajectory  to follow and the gains 1 2 3k ,k , k  and 4k  

are the solutions of Hurwitz polynomial. 

4.3   Simulations Results 

In simulation, the reference trajectory used in the proposed approach is 

( )1.5 sin(t) sin(0.5 t)crefy = + and the gains values are 

1 2 3 42.71, 2.72, 2.73, 2.74k k k k= − = − = − = − . 

The simulation result of the tracking control is shown in Figure 2. This figure 

presents a perfect agreement between the two trajectories.  Figure 3 shows the 

evolution of the pendulum angle; indeed, it is a small variation around zero. The 

evolution of the stabilizing control law is shown in Figure 4. The dynamics of this 

control signal is quite satisfactory. 

 
Fig. 2.  Evolution of the cart displacement cy and the reference                             

trajectory crefy  
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Fig. 3.  Evolution of the angle pendulum θ  

 
Fig. 4.  Evolution of the control signal 

5   Conclusion 

In this paper, based on an approximate input-state feedback linearization tech-

nique, we present a new control scheme to solve the problem of tracking control 

for the nonlinear non minimum phase system. The nonlinear system is first trans-

formed into its observability normal form. The latter is in turn approximated as a 

chain of integrators, neglecting part of the dynamics, and is finally controlled via a 

linearizing feedback. 

The neglected part is considered as a perturbation, which is vanishing at the 

origin. Thus, the stability analysis is provided based on the vanishing perturbation 

theory. The efficiency and the validity of the proposed approach are illustrated 

through an example of inverted cart-pendulum. 
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Appendix  

2 2
2 1 1 1

2 2 3 3
2 2 2 1 2 2 1 1 2 1 2

2 2 2
2 1 1 1

3 2 2
3 2 2 1

1  ( - cos( ))sin( ) / ( ( sin( ) ))

 ( 3 4 cos( ) 3 3 cos( ) 3 cos( ) cos( )

sin( 1) sin( ) cos( ) ) / ( ( sin( ) ) )

 ( 6 12 sin( ) 6

T m lx g x x l M m x

T x gM x g x M x gm x gm x lm x x x lx M

x lx M x g x M m l M m x

T x gM x Mg x M x

= +

= − − + − + + −

+ − +

= − − − − 2 2 2
2 2 1 2 1

2 3 3 3 3 2
1 2 1 2 1 2 2 1 1

2 4
1 1 1

3 3
4 2 1 1 2 2 1 1

6 cos( ) 2 cos( )

cos( ) 6 cos( ) - cos( ) sin( 1) ( ) cos( )

2sin( ) cos( ) ) / ( ( sin( ) ) )

 ( 2 sin( )) 3 cos( ) 2 sin( )cos( ) / ( (

gm x gm x x gm x

x l x M lm x x x lx M x lx M gMsin x x

x g x M m l M m x

T l M mx x m x lx x x x l M

+ +

− + + +

− +

= + − − 2 2
1

3 3 3 4
5 2 1 1 1 1 2 1 2

2 2 4
2 1 1 1

sin( ) ) )

 (2 sin( ) cos( ) ) sin( )cos( ) 3 cos( )

2 gMsin( )cos( ) / ( ( sin( ) ) )

m x

T l x x g x M m x x lx m x lx

x x x l M m x

+

= − −

− +

 


